2 1 Ju n 20 09 EQUIVARIANT BUNDLES AND ISOTROPY REPRESENTATIONS
نویسنده
چکیده
We introduce a new construction, the isotropy groupoid, to organize the orbit data for split Γ-spaces. We show that equivariant principal G-bundles over split Γ-CW complexes X can be effectively classified by means of representations of their isotropy groupoids. For instance, if the quotient complex A = Γ\X is a graph, with all edge stabilizers toral subgroups of Γ, we obtain a purely combinatorial classification of bundles with structural group G a compact connected Lie group. If G is abelian, our approach gives combinatorial and geometric descriptions of some results of Lashof-May-Segal [18] and Goresky-Kottwitz-MacPherson [10].
منابع مشابه
Equivariant Principal Bundles over Spheres and Cohomogeneity One Manifolds
We classify SO(n)-equivariant principal bundles over Sn in terms of their isotropy representations over the north and south poles. This is an example of a general result classifying equivariant (Π, G)-bundles over cohomogeneity one manifolds.
متن کاملEquivariant Bundles and Isotropy Representations
We introduce a new construction, the isotropy groupoid, to organize the orbit data for split Γ-spaces. We show that equivariant principal G-bundles over split Γ-CW complexes X can be effectively classified by means of representations of their isotropy groupoids. For instance, if the quotient complex A = Γ\X is a graph, with all edge stabilizers toral subgroups of Γ, we obtain a purely combinato...
متن کاملThe Equivariant Bundle Subtraction Theorem and its applications
In the theory of transformation groups, it is important to know what kind of isotropy subgroups of G do occur at points of the space upon which the given group G acts. In this article, for a finite group G, we prove the Equivariant Bundle Subtraction Theorem (Theorem 2.2) which allows us to construct smooth G-manifolds with prescribed isotropy subgroups around the G-fixed point sets. In Theorem...
متن کاملEquivariant Holomorphic Morse Inequalities II: Torus and Non-Abelian Group Actions
We extend the equivariant holomorphic Morse inequalities of circle actions to cases with torus and non-Abelian group action. For torus actions, there is a set of inequalities for each choice of action chambers specifying directions in the Lie algebra of the torus. If the group is non-Abelian, there is in addition an action of the Weyl group on the fixed-point set of its maximal torus. The sum o...
متن کاملCompactification of the Symplectic Group via Generalized Symplectic Isomorphisms
Let G be a connected reductive algebraic group over an algebraically closed field k of characteristic zero. We have a left (G×G)-action on G defined as (g1, g2) ·x := g1xg −1 2 . A (G×G)-equivariant embedding G ↪→ X is said to be regular (cf. [BDP], [Br, §1.4]) if the following conditions are satisfied: (i) X is smooth and the complement X \G is a normal crossing divisor D1 ∪ · · · ∪Dn. (ii) Ea...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010