2 1 Ju n 20 09 EQUIVARIANT BUNDLES AND ISOTROPY REPRESENTATIONS

نویسنده

  • IAN HAMBLETON
چکیده

We introduce a new construction, the isotropy groupoid, to organize the orbit data for split Γ-spaces. We show that equivariant principal G-bundles over split Γ-CW complexes X can be effectively classified by means of representations of their isotropy groupoids. For instance, if the quotient complex A = Γ\X is a graph, with all edge stabilizers toral subgroups of Γ, we obtain a purely combinatorial classification of bundles with structural group G a compact connected Lie group. If G is abelian, our approach gives combinatorial and geometric descriptions of some results of Lashof-May-Segal [18] and Goresky-Kottwitz-MacPherson [10].

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Equivariant Principal Bundles over Spheres and Cohomogeneity One Manifolds

We classify SO(n)-equivariant principal bundles over Sn in terms of their isotropy representations over the north and south poles. This is an example of a general result classifying equivariant (Π, G)-bundles over cohomogeneity one manifolds.

متن کامل

Equivariant Bundles and Isotropy Representations

We introduce a new construction, the isotropy groupoid, to organize the orbit data for split Γ-spaces. We show that equivariant principal G-bundles over split Γ-CW complexes X can be effectively classified by means of representations of their isotropy groupoids. For instance, if the quotient complex A = Γ\X is a graph, with all edge stabilizers toral subgroups of Γ, we obtain a purely combinato...

متن کامل

The Equivariant Bundle Subtraction Theorem and its applications

In the theory of transformation groups, it is important to know what kind of isotropy subgroups of G do occur at points of the space upon which the given group G acts. In this article, for a finite group G, we prove the Equivariant Bundle Subtraction Theorem (Theorem 2.2) which allows us to construct smooth G-manifolds with prescribed isotropy subgroups around the G-fixed point sets. In Theorem...

متن کامل

Equivariant Holomorphic Morse Inequalities II: Torus and Non-Abelian Group Actions

We extend the equivariant holomorphic Morse inequalities of circle actions to cases with torus and non-Abelian group action. For torus actions, there is a set of inequalities for each choice of action chambers specifying directions in the Lie algebra of the torus. If the group is non-Abelian, there is in addition an action of the Weyl group on the fixed-point set of its maximal torus. The sum o...

متن کامل

Compactification of the Symplectic Group via Generalized Symplectic Isomorphisms

Let G be a connected reductive algebraic group over an algebraically closed field k of characteristic zero. We have a left (G×G)-action on G defined as (g1, g2) ·x := g1xg −1 2 . A (G×G)-equivariant embedding G ↪→ X is said to be regular (cf. [BDP], [Br, §1.4]) if the following conditions are satisfied: (i) X is smooth and the complement X \G is a normal crossing divisor D1 ∪ · · · ∪Dn. (ii) Ea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010